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This is a progress report for part of works performed for
contract No., NAS8-11155 under the phase of analytic study of a
cantilever conical shell subjected to wind and thermal loads.

— v e 4 ARSI S 2 T

Most of the results given in this report were given in a

Technical Report* submitted previously, However, the results
have been checked further by a somewhat different approach from

X _ . (gL
the one uzed in that report. Some corrections afe made. Thus
this report may be regarded as the final one for the phase of the
analysis of a cantilever conical shell subjected to lateral

——

normal loads. For completeness the entire problem and basiec equa-

=

tions are briefed.

*"'An Asymptotic Solution For Conical Shells of Linearly
Varying Thickness', by C. H. Chang, Technical Report C submitted
to George C. Marshall Space Flight Center, NASA for Contract
No. NAS8-5168 by Bureau of Engineering Research, University of
Alabama, March 1964.




Progress Report for NASA Contract NAS8-11155
ON CONICAL SHELLS OF LINEARLY VARYING THICKNESS
SUBJECTED TO LATERAL NORMAL LOADS

Prepared by

{
+
Chin Hao Chang a ?5(11)
ABSTRACT (%;

The basic equations of conical shells of linearly varying
thickness and an approach to the homogeneous solutions were given
in "Stresses in Shells" by W. Flugge. The homogeneous solutions
were hinged on an eighth degree characteristic equation. 1In this
report, along the line of the theory, the characteristic equation
is given in a different form, and a method of solving the equation
is aiso presented. When let the ratio of the end thickness to
total length approach zero asymptotically, it is found that the

solution consists of two parts: membrance and bending. The two

parts are coupled by the lateral aisplacement. The particular
solutions due to lateral normal loads are also given along with

a numerical example of a truncated semi-circular cone.

+Associate Professor of Engineering Mechanics, University
of Alabama
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Introduction

The theory of conical shell of linearly varying thickness
in the framework of generalized plane stresses of linear theory
of elasticity along with a general approach of solving the basic
equations has been given in Reference [1]1. The three homogeneous
equilibrium equations in terms of three displacement components
were solved by the classic method of separation of variables; in
turn the solutions were hinged on an eighth degree characteristic
equation,

The basic equations may be regarded as the results of series
expansion of the stresses and displacements in a parameter k
which depends on the ratio of the thickness to length, and only
the terms of zero and first order of k are retained. Along this
line, in this paper the characteristic equation is presented in
a different form and is solved by a method being approximate but
consistent with the theory.

Of the eight roots of the equation, four are real and the
other four are complex., When let the parameter k approach zero
asymptotically it is found that the solution of the real roots is
of membrane theory while that of the complex roots is of bending
effect. A general asymptotical solution is given including eight
undetermined constants,

Generally there would be no difficulties in obtaining the
particular solutions of the system due to lateral normal loads. When

the load is uniformly distributed along meridians, the solution,

1Numbers in brackets designate referencés at end of paper




however, is near a singularity of the system. It is at a singularity
for the asymptotical solution., The particular solution of a such
case is given.

As an example for illustration, a semi-circular truncated
cone which has two generators simply supported with the smaller
circular end fixed and the other end free is given. It is shown
that the bending effects confine in the neighborhood of the clamped

edge as it would be expected.

Basic Equations

Let 0O, s be circumferential and meridional coordinates of
the middle surface of an isotropic conical cone and u, v, w, be
circumferential, meridional and normal displacement components
respectively. Outward w is positive. When the thickness of shell
h 1is proportional to s and independent to €, one has

h = &8s (1

where & 1is a constant which for thin shells is very small. The
elastic law assumes the following relationships between the stress
resul tants and displacement components.

N, =0[sv: + v (u' sec a + v + w tan a)-k s2w’°tan a]
Ng =J0[u' sec a *+ v+ wtan a + Vs v

+ k(v tan o + w tan? o + w" sec? a + sw') tan a]

Neg =¢0~1——;—1 [su” -u + v' sec a
</ ’
+k (su” - u - == + —Y) tan? a)

sin a sin a

(2)

2Fyrther details see Reference [1]




N°8=ﬂl;v[su'-u¥v' sec a

sw w'
+ k (v' sec a + ~— - —
sin a sin a

) tan?® d]

M = Pks{s?w’'" - sv' tan ¢ + v (W" sec® a + sw" - u' sec a tan a)]

M9 =ks[w" sec?® a + sw' +w tan® a + v tan a + ygiw ']

Mse = Pk(1 - v) s[(sw'" - w') sec a -~ (su” - u) tan a]
Mos = Qk(1l - v) gf(sw': - w' + -:f v' tan a) sec a - % {(su’ - 4, tan a]

in which Ns coay MQs are stress resultants and stress moments
per unit length. The dots indicate partial differentiation with
respect to 8 and primes with respect to 0; a is the complement

of the half central angle of the cone,

_ ED _ b2 (3)
o-m and k = 12

where E is Young's modulas of elasticity and v Poisson's ratio.
The six equations of equilibrium may be given in the following
forms:

(st) +Ngs secu.—Ng= -Pss

(8N50)+N9 sec o + N —Qotana=-Ps

+ '
N9 tan a Qo sec a

+
~
)

w
~

"
v
/]

W)

(sMs) +M0s seca.-Mg= st

(SMsO) + Mosec LR

&

s(Nos - NsO) =M

os tan ¢

where Qs and Q9 are the transverse shear forces per unit

length and acting on sections perpendicular to the s and 0



directions; Pr’ Ps and PO are surface loads per unit area

in normal, meridional and circumferential directions respectively.
Dropping the last one of equations (4) which is an identity
and making use of the fourth and fifth of equations (4) to eliminate
the transvefse shearing forces Qs and QO in the other three
equations, one has the three equations of equilibrium of the forms:

s(stdY + 8N . "sec a+ 8N, - (sM ) tan a

(*] Os 1M
- - Mt = - 2
MOs tan o M 0 tan a sec a Pes
(5)
8 ° ' - = . 8
( Ns) + Nos sec a Ng Ps

sNo tan a + s(sMs) + (sM so) sec a + (sM'oS) sec a

+ 1] 2 - ® = 2
MO sec“ a sMo Prs

Substitution of elastic law (2) for equations (5) results
in the following equations of equilibrium in terms of the displace-

ments:

1 - v
2

82u°° + u'sec2a + (1 - v)su® - (1 - v)u + l-%—-!sv"seca

+ (2 - v)v'seca + w'tanaseca + k[%(l - v)s2u’ " tana

-V

+ 3(1 - v)su'tana - 3(1 - v)u tana - 3

2
58w’ seca
PQS
- 3(1 - v)sw' seca + 3(1 - v)w'secaltana = - —
L (6)
1 ; Ysu' seca - %(1 - v)u'seca + s3v’ " + l—%—xv"secza

+ 28v’ - (1 - v)v + vsw tana - (1 - v)wtana

+ k[l—i—!v"tanasecza - vtana - s%w"" + ; Yew'" sec2a

P s
- 382y * - 3 Yyrgec?a - sw - wtanZa]tana = - :%—

2




[u'seca + vev" + v + wtanaltana + k- 3 ; 2s2u'" " geca
- (3 + v)su'"seca + (3 - Sv)u'seca ~ s3v°", + l—%—lsv"'seczu

683v"" + (2 - v)v''sec?a - 78v" - v(1 - tan3a)]tana

+ k[shw' " + 2g2w''*"sec3a + wIVsecua + 88w " + 4sw''“sec2a

+ (11 + 3v)s?w"° + 2w"tan?asec?a - (5 - 6v)w''sec3qa
Prs
- 2(1 - 3v)sw - w(l - tan?a)tan3a] = ;%-

Consider a segment of cone being bounded by 8 = 0 and 0,

and s =L, and L, L; <L, For convenience, a nondimensional variable

y 1is introduced such that

= |8
yolt (7)
On the observations over equations (6), the displacement
fuctions may be assumed in the forms:
An-l gin nuo
u=Ay cos ~g
Ay -1 cos nn@ .
v = Bnyxn si_nT1 (8)
_ -1 cos nmo
w s C,,Y)‘“ © sin g,

!
in which An' Bn’ Cn and Xn are constants to be determiqfd.
Physically speaking the upper set of the sinusoidal functions in
(8) is for a complete cone (6; = 2r) while the lower one is for a
segment of cone with two generator edges simply supported so that
along 0 =0 and 0, (<2n)

w=0 v=0, N, =0, and M, = 0

(%) *] 9)

The reactions along the two generator edges are given by
S = + M
Q * M

0 os at 0 = 0 and 0, (10)



The Se is transverse shearing force at a section perpendicular
to the @ direction, The shearing force Qg may be obtained from
equations (4). 1In what follows the case in which only the lateral

normal load appears is considered.3 Thus

= cos nﬂg
and let Pr P ( ) oin 9 (11)

Substitution of the assumed displacements and loading functions
into equations (6) yields

dllAn * d12Bn * d130n =0

d21An * d22Bn * d23Cn =0

L - An
d3lAn +d,B +4,.C (y)y

32 n 33n g Prn a2)
where

a,, = 15 + xtan?a)(9 - A2) + w?
d12 = + %[(7 - 5v) + (1 + v)Xn]m
a, = +[1 + (309 - 11v) + 8 - (3 - v)Z]utana
A0 = 2(1 - A2) + (1 = v)A + 3w?) + k tanZa(l + 25-Yn?)
227 & 2 )

1 (13)
d23 = Etana[(2 - V) = VALl

- %ktana[(l -~ 8tan2a + 2(7 - 3v)m2)

2
- (3 %21 - VImA_+ ] - 3]

533 = tan2q + ——k[(13 - 12v) - 16 (1 - tan2?a)tan3a

+ 8(11 - 12v - 4tan?c)m? + lﬁmu

- 2(7-6v + 42 N2 + A}

3When the other 1loads exist, one may follow a similar procedure
and by superposition to get the appropriate solution.




and in which

nmn
m = == seca

0, (14)
The expressions for d21’ d31, d32 are obtained by replacing Xn
with -Xn in d12, 613, 623, respectively. The plus and minus

signs which appear in front of one term correspond to the upper
anf lower set of sinusoidal functions henceforth.

In order to have non-trivial homogeneous solutions of the
system of equations (12), the determinant of the coefficients
must vanish. This results in an eight degree characteristic equation
for Xn' Neglecting the terms of second and higher power of k
as it has been done in the derivation of elastic law (2) yields

the characteristic equation in the following form:

4 2 8 6 i 2 .
G[Xn - 10, ¢ 9] * k [xn T By BN~ Eh * )= 0 15)
in which
G = 16(1 - v2)tan2a
g = 4(7 - 4v) - 8ytan2a + 16m3
gy = 2[127 - 136v + 24v2
- 4(8 + 3v)tan?a + 8(4 - 3v2)tanua]
+ 16[(17 - 12v) - 6tan?a] m2 - 96mu
= - 2
gy 4[203 - 316v + 120v 16)

2(80 - 61v)tan®a + 40(4 - 3v2)tan'a]

-+

16[(71 - 72v) - 4(13 - 10v)tan3a

+

8(2 - v)vtanua] m?

64[(13 - 12v) - 2(4 - v)tan2a] mu + 256m6

+



gy = 9[(13 - 12v)(5 -~ 4v) ~ 8(8 -~ 7v)tanca + 16(4 - 3v2)tanua]

+ 16[(215 ~ 412v + 192v2) + 2(89 - 172v + 96v2)tan2a
+ 40(2 - v)tanua] m2
- 32[(81 - 184v + 96v2) + 4(16 - 13v)tan3a - 8tanua] m#

8
+ 256[(3 - 4v) - 2tan?a] n® + 256m

In view of the approximation made in the derivation of equation
(15), the following approximate method is suggested for this equation.
Introducing

2 = +
Kn Xno kXnl ‘ 7)

into equation (15) results in a sequence of equations associated
with the various powers of k., The equations associated with the
two lowest powers of k are

2

X - 10X +9 =0
no no
and
4 3 2 , _
xno - gGxno * guxno - g2Xno "8 * 2G(Xno - S)an =0
from which
Xno = 1 and 9 (18)
4 3, .2
X = - Xo ~ 86%no T Bfno ~ %2%n0 T &
X -
nl 2G( o 5) (19)

Thus, one has two roots of an which are denoted by an and Xng

1-gs+8 ~8 *¢
2 _ 6 "8 =& &
Mg T L TE 5C
(20)
b o3 2
M, =90 -k2 778 "% 8 9% " &

8G
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Substituting them into equatien (15) yields a quadratic equation

of X: which gives

2 _ 1 _ 32 _ 2
AoF 2(g6 Xn2 A nl)
n}
4
2 %G, 1 2 2 2
z lsz 2 (Bp * %0 - 58 ~ M2 = Myp?
nl n2 (21)

Y

Hence the eight roots of A, &roup intc two, four each. One group

is of real numbers; the other is of complex numbers.

The next step, as a rountine, is to solve for A.n and Bn

in terms of Cn for each root of Xn from any twoe of the homogeneous

equations of equations (12). The eight constants C, shall be

L
determined by eight conditions at vy =)il and 1, The boundary

conditions along the generator edges are satisfied by the choice
of sinusoidal functions of the angle ©O. At the two circular
edges one has the following four boundary conditions at each edge.
For a build-in edge:
u=0, v=0,w=0andw =0 (22)

For a free edge:

= = S = = '
Ns 0, Ms 0, A 0 and Ts 0 (23)
where
S =Q_+ L M' .seca
8 ] s 80
Mgg
Ts = ng - —;—tana (24)

being transverse and tangential shearing forces at sections per-
pendicular to the s-direction respectively., The shearing

force Qs can be obtained from equations (4), For a simply
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supported edge:

w = 0, M =20 N =20 or v=20

and

Asymptotic Solutions
As the parameter k approaches zero; the two groups of roots
Xn reach at the following asymptotic values:

A, =1, g = * 3

: A (26)
A = p(l+i), o =-p(1+i)
3 - ! - 27)
5 8
where
_ 1
PE 2S5 (28)

The subseript n has been and henceforth will be dropped for sim~
plicity.
When the first group of A, Ki (i =1, 2, 3, and 4) is

substituted into the first two equations (12) to eliminate Ai

and B, and keeping the leading terms only solutions (8) assume

the following forms:

C 1

C
I 3 o2
—1 7w - 2(1 - v)y? R

u

+ mtana{ 5
m

L4t 4y - 5&} gin DO

TG A T .
m=(7 2v m<) cos 91 (29)
e pana {25 1, % 1 ) cos nn@
SR T T T n? - 21 ~v) y2 w2 - 7 + 2v y¥ ) sin )
I _ ~2 2 -4 3 cog nTo
w o= {c1 + Gt oy v oy }sin N
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When the second group of )\, 'Xj, (j=5,6,7, and 8) is
used, following the similar procedure, and using some identities
to convert the complex expressions into real, one obtains the

foll t;wing solutions:

BII = ? 2(2 + v)mtanagiy*l{yp[Cscos(plny) - CS sin(plny)]
- y'p[Cgcos(p(ny) - C7sin(p¢ny)]} 2%2 2%:
S vtancly-l{‘ypkc - C')cos(plny) + (C. + C.)sin(pfhy)]
P ’ ° > s (30)
-y p[(C7 + Cs)cos(plby) - (C, - Cg) sin(plnyﬂ} cos E%Q
S 1
¥

.'II = yfl {yp[cscos(plny) + Cssin(plny)]

-P i s cos DO
+y [C7cos(plny) + Cssxn(plhy)]} sin 0,

It is noted that the gsolutions of the first group are simply

that of membrane theory.

Based on solutions (29) and (30) one may establish the orders

of magnitude of the displacement componentsu

R S SR S S P (%0)
(31)
vII =0 (%) and uII =0 (%3)

Due to uI, vI and wI, the magnitudes of the corresponding

1 i

stresses N8 . No and N obtained by use of relations (2) are

I
Qs

also of the order of (%0) and the moments are of (%3) and higher,

The order properties of the stresses due to u;I; vII and wII are

not quite obvious and will be examined as follows,

uIt is assumed as usual that the parameter m defined by (14) is limited

to small values such that the differentiation with respect to the @
does not affect the order of magnitude.
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Changing the variable s to y according to (7) and then to

7 such that
e VP
Y EY (32)

and neglecting the terms which are of the order of %)-3 and higher,

the stress-displacement relations (2) assume the following forms:

(u, geca + v + w tana)]

s 0 !
1

Ny =JO[(u,Qsecu. + v + w tana) + Equv,,(]

2
[}

. ol _
os ng-aO 3 [2p1(u,,( u+v,gseca]

M =vkL {%;92[7( 2w,’7 + ( 1 - %)'(w)q] - %p{w"( - %pvv)’l tana

+ v(w, gg3c=.<:2a + 'lip'("nr - u,gsecatana)} (33)

M0 =0kL[w,eesec2a + ‘;‘P'(wu, + wtan2q + vtana
Y Ja2[y2 1 -
+ u{p 24y + Q S w,,(] p'(w,,(}]
Mse =0kl - v)L[-;-p(w,'(gseca - W, gseca - %pi:u,,? tana
+ utana)

- 1 1
Moe =0kL(1 - v)[zpqw, secd - W, Secd - 7p¥ u,,{tanu

70

1 1
+ Eu tana + E V,0

tana seca]
where a subscript preceded by a comma represents the appropriate
derivative.

When the displacements

u=uII=%2U
II 1
= = - V
VY T (34)
w=wII=W
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are substituted into relationships (33) and only the terms with the

lowest order of (%) are retained the following relationships are

obtained

11 II a1 - v 1 .1
= 2= _lf) cm— — +
NsO Ngs £ T 5 [27U,r{ V,Osecaj
IT _ 2 2,L 2
M =fL(1 - v3)tan ) [q w,,,,( +7w,,( ]
(35)
1T _ 11
M0 = vMs
I 2ql
M30 = )2L(1 - v)tan ap3!( W,g.‘( seca
in which the relation
k = 4 (1 - v2) tan2a
o | (36)
obtained from expression (28) has been used.
II II
Note that the normal stresses Ns and Ng are of the same
I I
order as that of Ns and NQ . It can be shown, however, that
NQI and NsII vanish identically. When only the terms of the
lowest order of (}p') are retained, one has
I . _ 1 II
u=u, v=v, w=w +w
I, L II _ _ I
N, =N No = Ng - g = Ngg = Ny (37
_ L II S s & _ o II
Mg = Mgy Mg = My Mg = Mo = Mg

By the similar comparison of order property one can show that

the transverse and tangential shearing forces defined by equations



15

(10) and (24) are

8] e '’ s s s s s0 (38)
Thus the two sets of solution, membrane and bending are coupled
by the lateral deflection w; otherwise, they would be separable,
In view of equations (37), (38) and (34), and when solutions
(29) and (30) are used, the stresses and moments may be given in

the following final explicit forms:
C 3C

= e - : -2 T4 -4 cos nré
Ns 2E0 tana [mz T 2(1 ~ v2)) YR T w 2v7 sin 01
Ng = Eﬁygltana{yp[cscos(pfny) + Cssin(plny)]
=P . cos nno
+y [C7cos(p[ny) + CSSLn(plny)]} sin 6,
- s 6tanc an
= v = E " Sln
Nse Ts + 20 {m(mz — 7+ 2v) 4y } cos
- 2ES 2 p ..
Ms =z tan2a Ly'{y [C6cos(pfny) - C531n(plny)]
+ ¢y Pl Cocos(pbhy) + Cosin(p ny)] ; €98 nno
8 7 | 7 ) sin 91
Mg = vMs

72]
1]

- IR 1 ' u
0 * 3%% m(2 - v)tan®ay { yP[C6cos(p[ny) ~ C531n(p[ny)]

+ y_p [- C,cos(pfny) *+ C,sin(pfny)] | sin DU6
8 7 / cos @ (39)

ESH -1 - L .
5= > tan2ay {yp[k - 05 * Cézcos(plny) - (C5 + C6)s1n(pfny)]
+ ymp[(c7+ C

8)cos(p[ny) - ’C7 + C )SLn(p[ny)l}COS nné
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and
w _
As 38
= lkpy—3 {ypKC + C_)eos(pfny) - (C. - C.)sin(p¢ny)]
2L 5 76 5° %6 y
-y P ; cos RT8
y [(C7 - Cs)cos(plny) + (c7 + 08)31n(p(ny)]} Sin 91
Particular Solutions due to Lateral Normai Loads
Let the lateral normal load given by(l1l) be confined in a
form
= B, 2B
Prn(y) = a Ly (40)
i.e,
- a g°
Prn(S) e s
where a, and P are prescribed.
One may assume a set of particular solution in the similar
form as given by expressions (8) except kn, in this case Xn
shall be replaced by
A= 2B + 3 (1)

a known number, Then the particular solutions are readily obtained
by solving the three algebraic equations (12) simultaneously
provided that \* is none of the roots of the determinant. However,
in one of the most common loadings the load is uniformly distributed
along meridians, B = 0 hence A* = 3 which is one of the roots
at the asymptotic case. In the case such as this the approach

needs to be modified. In what follows the particular solution

due to this kind of uniform load is given.
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Since in this case A* 1is g finite constant when the parameter
k approaches zero, the corresponding particular solution may be
obtained from the equations of wmembrane theory of the system,

Setting k = 0 and having the independent variable s trans-
formed to y, equations (6) reduce to the following equations

of equilibrium of membrane theory with a lateral load Pr:

1 - vro2 1* v ‘ 2q
5 [y u,yy + 3yu,y - 8u] + Y. g Seca * 4, ggsec?a

+ (2 - v)v,gseca + w, .secc tana = 0

'Q
(42)
1 + v 3 1, 3
B yu,gyseca - 2(1 - v)u,gseca + 4 v,yy + uyv,y
» LoV sec2aq - (1 - v)v + lvyw tana - (1 - v)wtana = 0
2 ’Q0 2 'y
u, .Seca + lvyv + v + wtana = 1“-]E’ y?
0 27’y Lr
where
P_=a CcOS nno
r n sin @ (43)
Let the particular solutions of equations (42) be assumed
as below:
p_ - 2 sin nn@
uwo= G d1 " d2lny)y cos 91
v = () + by fay)y? 208 B
in 1 (l&l-l-)
P 2 cos nn8
wo=e (1 + Inydy sin 0,

in which dl' d2, bl’ b2 and e, are constants to be determined.

When these assumed solutions are substituted into equations (42)

and after the sinusoidal functions and y2 are cancelled, one will
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have three equations in the following fashion.

- fn L
f¢[ny * By Tna @ 063 (45)

"

where the subseript § ( = 1, 2, 3) indicates the three equations
of (42) respectively, f¢ and h¢ are expressions of the physical

and to-be-determined constants, and 6¢3 is the Kronecker delta.

By making the cocefficients of both sides of equations (45) equal,
there are two sets of algebraic equations; each contains three

equations that

Ep=0 (46)
= 2n L
By = Tana g °63 (47)

There are, however, only two of equations (46) that are independent
because \* = 3 is one of the roots of the determinant. Thus

the five constants may be determined by the five independent
equations of (46) and (47). The results are

P - 4ap
+ tana

i

L 1 4
u = % {iﬁz [2m” - 3(5 - v)m? - 3(1 + v)]

- i 0
(w2 - 7 + 2v)iny }y? Sin B
+

} cos 91 (48)

a
i Ll [3(1 - 2v) - m2]y2 €OS nng

~ Yana E6 6 sin 9,
Po o, L1l oo cos DNO
o Tan2a E6 3 [m2 - 7+ 2v]Q0 + 4ny) sin 0,

When these displacements are substituted into the expressions (2)

with k = 0 the corresponding stresses are

a
N P= Znb {% (3 - m2)y?

s tana
vV m2 2 _ + cos nné
+ I——:—;—s —'—3 (m 7+ 2v) (1 + 1)lny} sin '—""gl (49)




P _ajL 2 1 m2 2 + cos DTO
Ny = 2= [y2 + ;== 7@ - 7+ 2901 ¥ 1) fny] So8 '
P - &nL n ya

3 fm2 - 7 + 2v) ¥ (3 - 6v - m2)] sin DTO

NsQ tana 12(1 + v cos 01

These particular solutions combined with those given by solutions

(29) (30) and (39) constitute the complete solutions,

An Example
For purpose of illustration, take a truncated semi-circular
cone with the two generators simply supported. Thus the lower set
of solutions (29) (30) (39), (48) and (49) are to be used. Let

it be clamped at the smaller end at 3 = L, and free at the other

1
end where 8 = L so that
e o=y = OW _ _,Ll
us=v=Ews= = 0 at y T (50)
N =T =M =8 =20 at y =1

s s s 8
By making use of the first two in each of the foregoing two

sets of boundary conditions, constants Ci, C2, Cb and Cu can be

determined; then the other four constants can be determined by the
remaining four boundary conditions.

The lateral normal loads are also known as wind loads, Usually
there are two types of such loads: symmetrical and non-symmetrical.
Since the asymptotic solutions hold for small values of n only,
two casegs of n =1 and n = 2 are considered.

Let

ap = p for n =1

(51)
=0 for n>1
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that

Pr = p sin@

represent a symmetrical load. For

= b =
an = 9f§ P forn =1
=2 =
= 6]3 P forn = 2
=0 for n > 2
that
4 . 1
= e + - i
Pr glgﬂp(SLnO 3 sin 29) (52)
represents a non-symmetrical load. These two types of loads are
depicted in Fig. 1.
For numerical computations the following values are assumed
= o =l —1‘-:
a = 757, v 3 ,L 0.90 (53)
Considering % as a parameter where R is the principle radius

at a section of thickness t, thus 6 = % cosa, the eight roots

of N\ computed from expressions (20) (21) and expressions (26) (27)

for asymptotic values are listed in Table 1.

Table 1, The Values of X\

P | ow e n =2 R
0.004 +0.999999 +1.0523 *1
y |00 | sosssser | mume |«
0.008 +0.999995 +1.1955 +1
0.004 +3.00003 +2.9851 +3
A3 | 0.006 +3,00007 +2.9663 +3
0.008 +3.00013 +2.9397 +3
0.004 +153.27(1.002711) #152,75(1.00992i) +153.48(1+1)
ng 0.006 #125.09(1.0035+i) | *124,51(1.0149%1) $125.32(1¢i)
-0.008 +108.28(1.0045%i) | #107.77(1.0198%i) *108.53(1%1)
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It is evident that as thgse roots are concerned for this case,
the asymptotic results are quite satisfactory for practical use;

The asymptotic solutions of displacements, stresses and
moments computed from expressions (29) (30), (39) combined with
(48) and (49) may be given in the form:

F_ (7,0) = £ (y) 8in -’6‘"—9 n=1 and 2 (54)
1

in which the function fn(y) are presented in Figs. (2) to (11).

Closing Remarks
There are a number of approaches for solutions of shells of
revolution available. A recent one was presented by Kalnins [2]
by treating the system of equations as a series of initial-value
problems. A comprehensive list of literature was also available
there, Conical shells subjected tgmsg§3w19§g§wggs,studied by
Clark and Garibotti [3] by using of edge effect approach,

The present solutions are in explicit forms and readily to be C;//

used for practical purpose; the asymptotic solutions are exact

and applicable to conical shells
1
1 .t )
— (= cOos <
13 G )] <<1,
When the above parameter is very small the solutions may be
useful for conical shells whether of linearly varying thickness
or of constant thickness such as those given in the example.
In the given example the bending effects diminish rapidly
from the clamped edge as this is known as edge effect or boundary

layer phenomenon. The moments and shearing forces due to the
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bending effect are of higher order as compared to the membrane
stresses, However the membrane stress N9 induced by the bending
effect is of the same order as the other membrane stresses. Thus
solutions of the membrane theory alone not only make the solutions
incompatiable but also makehéome errors not negligible in the
membrane stress Ne.

The deflection particulariy the lategf
free end in the given example is comparatively large to the thick-
ness. For such large displacement, the theory is applicable provided

the shell is not overstrained [4:. Thus the strain at the fixed

end control the validity of the results.
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